
SERVICEMANUAL

KENDALL

AERODYNE Ω

Warennummer: 18605-06

(C) Copyright 1995 K E N D A L L GmbH Medizinische Erzeugnisse Alle Rechte vorbehalten

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten. Kein Teil dieses Manuals darf ohne schriftliche Genehmigung durch KENDALL in irgendeiner Form - durch Fotokopie, Mikrofilm oder andere Verfahren - reproduziert oder in eine datentechnisch verwendbare Sprache übertragen werden.

Gewährleistung

Alle technischen Angaben, Pläne und Zeichnungen wurden mit größter Sorgfalt erarbeitet bzw. zusammengestellt und unter Einschaltung wirksamer Kontrollmaßnahmen reproduziert. Trotzdem sind Fehler nicht ganz auszuschließen. Aus diesem Grunde weisen wir darauf hin, daß keine Garantie für die Richtigkeit des Inhaltes gegeben werden kann. Für die Mitteilung eventueller Fehler sind wir jederzeit dankbar.

KENDALL Medizinische Erzeugnisse Raffineriestraße 18 D-93333 Neustadt / Donau Tel.(09445) 9 59-0 / Fax. 9 59-155

Service und Garantieleistungen KENDALL garantiert, daß dieses Gerät nach umfangreichen Qualitätskontrollen in einwandfreiem Zustand ausgeliefert wurde. Das Gerät entspricht den aufgeführten Normen und Vorschriften. Die Einhaltung der technischen Daten wird

WARNUNG

garantiert.

Sämtliche Garantieansprüche erlöschen mit dem Öffnen des Gerätes durch nichtautorisierte Personen und mit dem technischen Verändern des Geräteaufbaues oder Zubehörs.

SICHERHEIT

Vor dem Öffnen des Gerätes Netzstecker ziehen!! Messungen und Funktionsprüfungen sind nur mit einem Schutztrenntransformator durchzuführen. Vermeiden Sie direktes Berühren spannungsführender Teile. Sicherheitssymbole und Warnhinweise in der Anleitung beachten!! Das **AERODYNE** Ω ist ein Gerät zur Aerosolerzeugung. Durch Ultraschallvibrationen entsteht ein feines, dichtes Aerosol, das durch einen Luftstrom zum Patienten befördert wird.

Merkmale und Eigenschaften des AERODYNE Ω

- * Erzeugung von feinem Aerosol (1-6 μm)
- * Geeignet zur Dauervernebelung

Kapitelübersicht

- Allgemeine Informationen <u>Kapitel 1</u> gibt eine kurze Einführung in die Anwendung des **AERODYNE** Ω sowie den Gebrauch des Servicemanuals.
- Schnellstart <u>Kapitel 2</u> beschreibt kurz und übersichtlich die Inbetriebnahme und die Bedienung.
- **Funktionsbeschreibung** <u>Kapitel</u> 3 erläutert die Funktionsweise und die Betriebsprozeduren des **AERODYNE** Ω und erleichtert so die Wartung und Fehlersuche.
- Sicherheitstechnische Kontrolle <u>Kapitel 4</u> beschreibt die Vorgehensweise beim Funktions- und Sicherheitstest.
- Wartung <u>Kapitel 5</u> erläutert die Vorgehensweise bei den Serviceintervallen und gibt Hinweise zur Gewährleistung der Betriebssicherheit.
- Fehlermeldung und Fehlersuche <u>Kapitel 6</u> führt mit Hilfe von Fehlerdiagnosetabellen zielgerichtet von der Fehlererkennung bis zu ihrer Behebung.
- Zeichnungssätze <u>Kapitel 7</u> beinhaltet sämtliche zum AERODYNE Ω gehörigen Schaltpläne, Konstruktionszeichnungen und Stücklisten.
- Spezifikationen und Prüfprotokolle <u>Kapitel 8</u> zeigt die wichtigsten technischen Daten sowie Prüfprotokolle des AERODYNE Ω.

<u>Inhaltsverzeichnis</u>	<u>Seite</u>
Kapitel 1 - Allgemeine Information – Sytembeschreibung – Arbeitsweise – Einsatzmöglichkeiten – Gebrauch des Servicemanuals	6 7 8 9 10
Kapitel 2 - Schnellstart – Vorbereitung zur Inbetriebnahme – Gebrauchsanweisung – Vorsichtsmaßnahmen	11 12 13 16
Kapitel 3 - Funktionsbeschreibung - Regeltechnische Beschreibung - Blockschaltbild - Schaltungstechnik - Betriebsverhalten	17 18 19 22 26
Kapitel 4 - Sicherheitstechnische Kontrolle - Sichtprüfung - Mechanische Prüfung - Funktionstest - Elektrische Sicherheit - Sicherheitstechnische Überprüfung - Abschlußbericht	27 28 28 28 29 29 30
Kapitel 5 - Wartung - Sichtprüfung - Mechanische Prüfung - Funktionstest - Elektrische Sicherheit - Pflege und Werterhaltung - Abschlußbericht	31 32 32 32 33 34 35
Kapitel 6 - Fehlermeldungen und Fehlersuche – Fehlermeldungen – Fehleranalyse und Lokalisierung – Fehlerbehebung	36 37 38 40
Kapitel 7 - Zeichnungssätze – Teileblatt, Ersatzteile und Zubehör – Stromlaufpläne – Bestückungsplan – Explosionszeichnung – Einbauanweisung Ultraschallschwinger – Oszillogramme	41 42 45 46 47 48 50
Kapitel 8 - Spezifikationen und Prüfprotokolle - Technische Daten - Notizen	57 58 59

KAPITEL 1

ALLGEMEINE INFORMATIONEN

- Systembeschreibung
- Arbeitsweise des **AERODYNE** Ω
- Einsatzmöglichkeiten
- Gebrauch des Servicemanuals

Systembeschreibung:

Das **AERODYNE Ω** dient der Aerosolerzeugung. Als Trägergase kommen dafür in Frage:

- Raumluft, die durch ein im Gerät eingebautes Gebläse angesaugt wird, den Nebel aus der RESPIFLO Sterilwasserkapsel austreibt und zum Patienten bläst.
- Raumluft mit dosierbarer Sauerstoffanreicherung, durch Zuleiten eines Sauerstoff-Flows vor dem Lufteintritt in die RESPIFLO Sterilwasserkapsel.

Das leicht zu montierende System besteht aus folgenden Komponenten:

- * **AERODYNE Ω** Grundgerät
- * Verneblerkammer
- * flexible Schlauchhalterung
- * Gebläseschlauch
- * Patientenschlauch
- * Bakterienfilter
- * Flaschenhalterung
- * **RESPIFLO** Sterilwasserkapsel
- * **RESPIFLO** Multifunktionsflasche
- * Überleitungssystem **RESPIFLO UN**

Die Raumluft wird ständig über das Gebläse angesaugt, und durch die **RESPIFLO** Sterilwasserkapsel geblasen. Der dadurch entstandene Luftstrom führt die vernebelten Wasserteilchen zum Patienten. Das Aerosol kann über einen Heizschlauch erwärmt werden.

Arbeitsweise:

Der Ultraschallvernebler **AERODYNE** Ω arbeitet mit einer Frequenz von 1,65 MHz.

Die elektrische Energie wird durch den Ultraschallwandler in mechanische Schwingungen umgesetzt. Über eine Kontaktflüssigkeit (Aqua Dest.) werden die Schwingungen auf die Membrane der **RESPIFLO** Sterilwasserkapsel übertragen. Dadurch wird der Inhalt der **RESPIFLO** Sterilwasserkapsel in kleinste Aerosol-Partikel zerstäubt.

Durch die ständigen Ultraschallvibrationen entsteht ein feines, dichtes Aerosol, das über einen Luftstrom zum Patienten geführt wird.

Durch die kleine und relativ homogene Partikelgröße zwischen 1 - 6 Mikron ist dieses Aerosol gut alveolargängig.

Einsatzmöglichkeiten:

Für das $AERODYNE \Omega$ kommen derzeit folgende Trägergase zum Einsatz:

- * Raumluft
- * Raumluft mit dosierbarer Sauerstoffanreicherung (durch Zuleiten eines Sauerstoff-Flows vor dem Lufteintritt in die **RESPIFLO** Sterilwasserkapsel)

Zum Vernebeln stehen derzeit zur Verfügung:

- * steriles Aqua Destillata
- * sterile isotonische NaCl-Lösung

Die Einsatzmöglichkeiten des **AERODYNE** Ω können über die entsprechende Auswahl der oben genannten Medien bestimmt werden.

Gebrauch des Servicemanuals:

Gliederung und Systematik dieses Servicemanuals sind auf eine möglichst effiziente Wartung und Fehlersuche hin ausgerichtet. Die Reihenfolge der einzelnen Kapitel entspricht zugleich der Vorgehensweise im Servicefall. Besonderes Augenmerk wurde auf eine fundierte und detaillierte Erläuterung der Funktionsweise der Elektronik für Regel- und Ablaufsteuerung gelegt.

Die Funktionsbeschreibung informiert über sämtliche Schaltungsteile und ihre Funktionen im Gerät. Diese Informationen sind die Grundlage für eine zügige und möglichst reibungslose Behebung von Fehlerursachen. Oszillogramme und Spannungssollwerte an allen wichtigen Schaltungsknoten ermöglichen ein schnelles Einkreisen von Fehlern.

Der Abwicklung von routinemäßigen Funktionstests und der periodischen Sicherheitstechnischen Kontrollen, von Service, Pflege und auch der Fehlersuche, sind Kapitel gewidmet. Der Servicetechniker sollte die vorgeschlagenen Vorgehensweisen als Anhalt für eine zügige Abwicklung nutzen.

Am Ende dieses Servicemanuals sind einige Seiten für Notizen vorgesehen. Nutzen Sie diese Möglichkeit für Ihre Erfahrungen und Hinweise. Bei Problemen und Schwierigkeiten zu späteren Zeitpunkten sind diese Seiten sicherlich sehr hilfreich.

Verwenden Sie nur Original-Ersatzteile. Bestellnummern und alle zusätzlich notwendigen Daten finden Sie am Ende dieses Manuals.

- Beachten Sie die angegebenen Hinweise und Warnungen!! –
- Sicherheit für Sie und den Patienten ist oberstes Gebot!! –

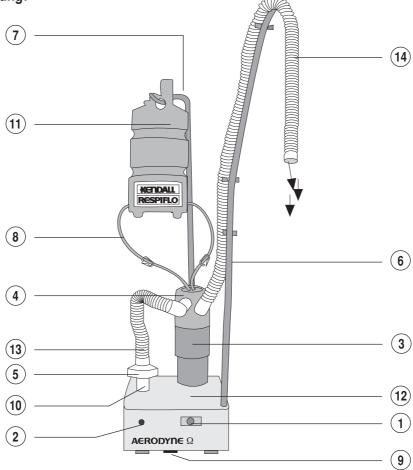
KAPITEL 2

SCHNELLSTART

- Vorbereitungen zur Inbetriebnahme
- Gebrauchsanweisung Vorsichtsmaßnahmen

Vorbereitung zur Inbetriebnahme:

Diese Hinweise zur Inbetriebnahme beziehen sich nur auf die Erkennung und Beseitigung von Fehlern und Störungen. Die Inbetriebnahme des Gerätes zielt auf die Sicherstellung der elektrischen, mechanischen und regelungstechnischen Komponenten des **AERODYNE** Ω .


Hinweise:

- * Jeder Alarm schaltet den Oszillator im Grundgerät ab.
- * Jeder Alarm wird automatisch nach der Beseitigung des Fehlers gelöscht.

Zum Testen aller elektrischen und elektronischen Komponenten ist die Vernebelkammer aufzustecken und mit Kontaktwasser bis zur Markierung zu füllen. Anschließend ist die **RESPIFLO** Sterilwasserkapsel einzusetzen.

- * Gerät einschalten
- * Gelbe Alarm-LED darf nur kurzzeitig leuchten.
- * Gebläse läuft (Geräusch)
- * In der **RESPIFLO** Sterilwasserkapsel wird ein Aerosol erzeugt.

Gebrauchsanweisung:

- 1. Ein-Aus-Schalter mit Betriebsanzeige grün
- 2. Störungsanzeige
- 3. Vernebelkammer
- 4. **RESPIFLO** Sterilwasserkapsel
- 5. Bakterienfilter
- 6. Flexible Schlauchhalterung
- Flaschenhalterung

- 8. Überleitungssystem RESPIFLO UN
- 9. Luftfilter
- 10. Gebläseauslaß
- 11. **RESPIFLO** Multifunktionsflasche
- 12. Grundgerät **AERODYNE** Ω
- 13. Gebläseschlauch
- 14. Patientenschlauch

1. Grundgerät aufstellen:

Das **AERODYNE Ω** Verneblungsgerät kann als Tischgerät bzw. transportables Modell verwendet werden. Wenn das **AERODYNE Ω** transportabel aufgebaut werden soll, wird es mittels der Fahrgestell-Halterung (Zubehör) am Fahrgestell (Zubehör) befestigt. Zu diesen Zweck wird die Fahrgestell-Halterung auf das Stativrohr des Fahrgestells gesteckt und ca. 60 cm vom Boden entfernt, mittels der Sicherungsschraube fixiert. Das Gerät wird auf die Fahrgestell-Halterung gesetzt und die Schraube der Halterung fest in die dafür vorgesehene Gewindebuchse im Geräteboden eingedreht. Zur Befestigung an Wandschienen wird das Gerät, ähnlich wie bei der Fahrgestell-Halterung (Zubehör, Waren-Nr.), auf die Wandschienen-Halterung (Zubehör, Waren-Nr.) gestellt und die Bodenschraube der Halterung fest angezogen.

ACHTUNG:

Beim Betrieb als Tischgerät muß die Stange mit der Aufhängevorrichtung für die **RESPIFLO**-Vorratsflasche so in das Gerät gesteckt werden, daß die Aufhängevorrichtung über dem Gerät steht.

2. Vernebelkammer aufstecken:

Die Vernebelkammer bis zur Markierung mit Kontaktwasser (Aqua Dest.) auffüllen, anschließend die **RESPIFLO** Sterilwasserkapsel (Pos. 4) einsetzen und die Vernebelkammer auf das **AERODYNE** Ω aufstecken.

3. Bakterienfilter und Gebläseschlauch montieren:

Den Bakterienfilter (Pos. 5) auf den Gebläseauslaß (Pos. 10) aufschieben. Anschließend den Gebläßeschlauch (Pos. 13) auf den Bakterienfilter stecken und mit der linken Auslaßöffnung der Sterilwasserkapsel (Pos. 4) verbinden. Die Verschlußkappen der Sterilwasserkapsel müssen vorher durch Abbrechen entfernt werden.

4. Flexible Schlauchhalterung einsetzen:

Die flexible Schlauchhalterung (Pos. 6) in die dafür vorgesehene Öffnung im $AERODYNE \Omega$ stecken.

5. Patientenschlauch befestigen:

Den Patientenschlauch (Pos. 14) auf die rechte Auslaßöffnung der Sterilwasserkapsel stekken, und an der flexiblen Schlauchhalterung (Pos. 6) befestigen.

6. Langzeit-Ultraschallvernebelung:

- a) Das Überleitungssystem aus der sterilen Verpackung nehmen. Einen der beiden Schläuche hinter dem Schutzschild anfassen und die Schutzkappe entfernen.
- b) Die Schlauchklemmen an beiden Schläuchen schließen.
- c) Den Einstichdorn in die vorgesehene Punktionsstelle am Boden der Vorratsflasche stechen, bis er gut sitzt und dicht abschließt.
- d) Mit dem zweiten Einstichdorn genauso verfahren.
- e) Die Multifunktionsflasche mit den an der Flaschenoberseite angebrachten Haltering an der Flaschenhalterung aufhängen. Es ist darauf zu achten, daß die Schläuche nicht abknicken.
- f) Die Sterilwasserkapsel muß bis zum Anschlag in die Verneblerkammer eingesetzt werden und die Verschlußkappen sind abzubrechen.
- g) Die Schutzhülle des großen Punktionsdorns entfernen und den Punktionsdorn in die markierte Stelle der Sterilwasserkapsel einstechen. Es ist darauf zu achten, daß das Bodenmembran nicht verletzt wird. Leichte Drehbewegungen des Punktionsdorns erleichtern das Einstechen. Der Dorn muß bis zum Anschlag in die Kapsel geschoben werden.

h) Die Schlauchklemmen können nun geöffnet werden, da nun eine kontinuierliche Versorgung der Sterilwasserkapsel aus der Multifunktionsflasche gegeben ist.

i) Nach der Beendigung der Vernebelung müssen beide Schlauchklemmen abgeschlossen werden.

7. Vernebelung starten:

Das Gerät durch den NETZ-Schalter (Pos. 1) einschalten. Zur Kontrolle leuchtet die Betriebsanzeige im Schalter grün. Nach einer kurzen Pause beginnt der **AERODYNE** Ω mit der Vernebelung des Sterilwassers.

8. Gelbe Störanzeige:

Beim Aufleuchten der Gelben Störanzeige ist das Gerät nach der Fehlercheckliste in Kapitel 6 (Fehlermeldungen und Fehlersuche) zu kontrollieren.

Vorsichtsmaßnahmen:

- \prod Die Vernebelungskammer kann im Betrieb eine Temperatur von bis zu 50 °C erreichen. Berührungsgefahr.
- Π Wenn das **AERODYNE** Ω als Tischgerät verwendet wird, muß auf sicheren Stand geachtet werden. Besonders ist bei der Verwendung einer Vorratsflasche darauf zu achten, daß diese über der Flaschenhalterung direkt über dem **AERODYNE** Ω hängt.
- ☐ Aus Sicherheitsgründen sollten folgende Vorsichtsmaßnahmen regelmäßig durchgeführt werden:
- * Bei der Langzeitvernebelung ist alle 14 Tage die Sterilwasserkapsel zu wechseln.
- * Die Steckkontakte sind alle 6 Wochen zu reinigen und mit Kontaktspray zu versehen.
- * Der Luftfilter sollte einmal im Monat gewechselt werden.
- * Der Bakterienfilter sollte alle 14 Tage ausgetauscht werden.
- ∏ Nur Original Zubehörteile verwenden!

KAPITEL 3

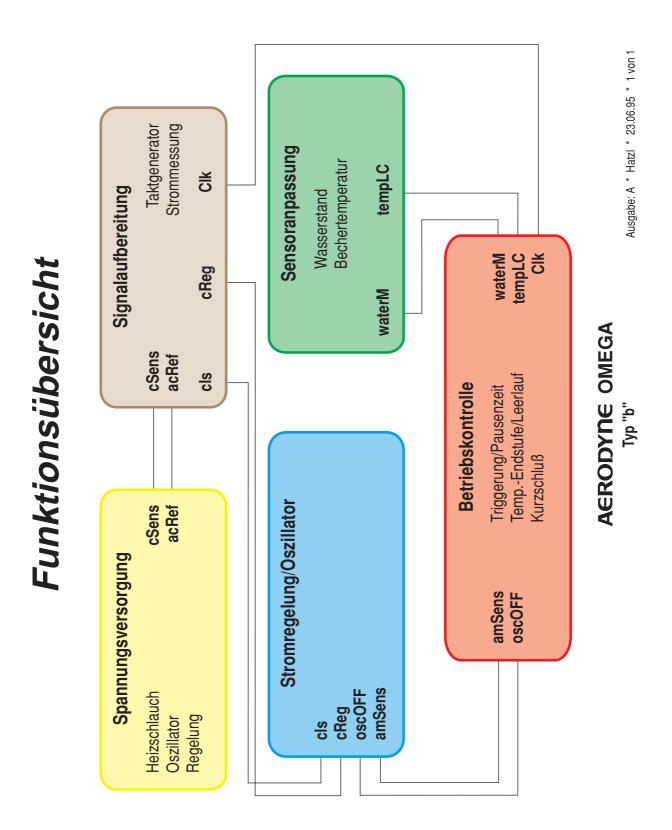
FUNKTIONSBESCHREIBUNG

- Regeltechnische Beschreibung
- Blockschaltbild
- Schaltungstechnik
- Betriebsverhalten

Regeltechnische Beschreibung:

Die regelungstechnische Beschreibung sei anhand des nachfolgendem Blockschaltbildes durchgeführt.

Der Sollwert der Stromregelung wird über einen DIP-Schalter fest vorgegeben, der Istwert ist das Maß für die aktuelle Stromaufnahme an der Endstufe. Die Regeldifferenz dient zur Leistungsregelung der Endstufe.


Die eingebaute Stromregelung hat PI-Verhalten und hält die temperaturbedingten Änderungen der Leistungsparameter der Endstufe in kleinen Toleranzen. Die Ausbringungsmenge ist somit für Stromwerte von ca. 410 mA bis 770 mA proportional.

Alle Alarmzustände, unten aufgezählt, führen zu einer Abschaltung der Endstufe mit optischen Alarm.

- * Übertemperatur der Endstufe (73°C 80°C)
- * Leerlauf der Endstufe/Schwingquarz
- * Kurzschluß der Endstufe/Schwingquarz
- * Übertemperatur Vernebelkammer (>50°C ± 3°C)
- * fehlendes Wasser
- * Defekt der Endstufe/Elektronik

Während einer Anlaufphase beim Einschalten wird die Endstufe ausgeschalten. Die Freigabe erfolgt automatisch nach 3-4 sek.

Blockschaltbild:

Blockschaltbild:

Das Blockschaltbild zeigt den prinzipiellen Aufbau und die Funktionsstruktur des **AERODYNE \Omega**. Die 5 Module sind auf einer Baugruppe konzentriert. Im Folgenden soll die Vorgehensweise deduktiv erfolgen, d.h. über die Wesensmerkmale jedes einzelnen Moduls wird die Gesamtfunktion erkennbar.

Modul 1 (Spannungsversorgung):

Die Spannungsversorgung des **AERODYNE** Ω erfolgt über das Wechselspannungsnetz mit 230V/50Hz. Der Lüfter ist primärseitig angeschlossen. Dieser Schaltungsteil gliedert sich im wesentlichen in drei Funktionsbereiche:

- <u>Spannungsversorgung Heizschlauch:</u> Über die Auswahl zwischen den Abgriffen *X11 X12* am Transformator lassen sich drei Schlauchtemperaturen auswählen.
- Endstufenversorgung und 100Hz Komperator: Dieser Teil ist hauptsächlich zur Spannungsversorgung, $U_{21} = 45V_{eff}$ 100Hz pulsierende Gleichspannung, des Endstufenoszillators und der Sensoren zuständig. Dabei wird zur Wasserstandsmessung die Vernebelkammer, mit U_{21} , unter Spannung gesetzt. Zum Schutz des Patienten wird daher U_{21} mit dem Schutzleiter PE verbunden. Zusätzlich werden noch zwei mit 100Hz pulsierende Gleichspannungen U_{acRef} und U_{cSens} erzeugt. Die Amplituden des Signals U_{cSens} sind proportional zur Stromaufnahme dieses Schaltungsteils.
- <u>Elektronikversorgung Vcc:</u> Für die Spannungsversorgung der Elektronik wird eine auf $15 V (\pm 2 \%)$ 1,5 A stabilisierte Gleichspannung erzeugt.

Modul 2 (Signalaufbereitung):

Dieser Bereich erstellt die Regelsignale (Ist-Wert U_{cReg} und Soll-Wert U_{cls}) zur Stromregelung und das Taktsignal (U_{cls}) zur Erzeugung der Pausenzeit beim Einschaltvorgang.

- <u>Strommessung und Sollwertvorgabe</u>: U_{cls} ist das Maß für die Stromaufnahme der Endstufe und wird aus den Signal U_{cSens} über einen Subtrahierer mit PI-Verhalten gewonnen. Über den DIP-Schalter wird das Signal U_{acRef} auf die Sollwertspannung U_{cReg} heruntergeteilt.
- Taktsignal: Durch einen Schmitt-Trigger wird das Taktsignal $U_{\it Clk}$ aus der pulsierenden Gleichspannung $U_{\it acRef}$ erzeugt.

Modul 3 (Stromregelung/Oszillator):

Dieser Schaltungsblock übernimmt die eigentliche Steuerung des **AERODYNE \Omega** und gliedert sich in die 2 Aufgabenbereiche: der Schwingungserzeugung und der Stromregelung für die Leistungssteuerung des Oszillators.

- <u>Schwinger und Endstufe:</u> Es wird eine Ultraschallfrequenz von 1.65~MHz über den Oszillator erzeugt und an den Vernebler weitergegeben. Zur Betriebskontrolle wird das Signal U_{amSens} an der Endstufe abgegriffen. Die Endstufe kann über das Signal U_{oscOFF} bei einem Fehlerfall abgeschalten werden, gleichzeitig wird optisch Alarm gegeben.
- Stromreglung: Die Differenz aus den Signalen U_{cReg} und U_{cls} ist das Maß für die Regelung der Endstufe zur Leistungssteuerung des Oszillators.

Modul 4 (Sensoranpassung):

Bei der Sensoranpassung wir der Wasserstand und die Temperatur in der Vernebelkammer kontrolliert. Die Temperatur wird zum Schutz des Benutzers und des Patienten überwacht, der Wasserstand hingegen muß kontrolliert werden, um das Piezoelement vor Zerstörung zu bewahren.

- <u>Übertemperaturkontrolle:</u> Bei einer Wassertemperatur von mehr als $50\,^\circ\!\!C$ wird das Signal $U_{tenul.C}$ auf High geschalten.
- Wasserstandskontrolle: Bei fehlendem oder zu wenig Wasser wird das Signal U_{waterM} auf High geschalten.

Modul 5 (Betriebskontrolle):

Der Schaltungsteil Betriebskontrolle dient dem Schutz der Endstufe, der Vernebelkammer und des Patienten. Die Betriebskontrolle schaltet im Fehlerfall über das Signal U_{oscOFF} die Endstufe ab.

- <u>Leerlauf- und Kurzschlußkontrolle:</u> Über das Signal U_{amSens} werden diese beiden Fehlerfälle kontrolliert. Im Fehlerfall wird nach einer Pause von $T_{FE}=1.2s\,$ die Endstufe alle $30\,$ bis 40ms aktiviert.
- <u>Endstufentemperaturkontrolle:</u> Die Temperatur der Endstufe wird über einen PTC-Widerstand am Kühlkörper gemessen. Bei Überhitzung des Endstufentransistors muß die Endstufe abgeschalten werden. Nach der Abkühlung von 4 bis 8K wird die Endstufe wieder automatisch eingeschalten. (Hysterese)
- <u>Wasserstands- und Bechertemperaturkontrolle:</u> Treten diese Fehlermeldungen, über die Signale U_{tempLC} und U_{waterM} auf, muß zum Schutz der Vernebelkammer und des Patienten die Endstufe abgeschalten werden. Bei Aufhebung der Ursache wird die Endstufe wieder aktiviert.
- <u>Pausenzeit beim Einschaltvorgang:</u> Um Fehlermeldungen und Schäden beim Einschaltzustand zu vermeiden, werden über eine Pausenzeit stabile und eingeschwungene Zustände in der Elektronik abgewartet bevor die Endstufe nach 1-3 Sekunden zugeschalten wird.

Schaltungstechnik:

Achtung:

Bei Meßaufgaben auf der Platine, zum Beispiel zur Fehlersuche, ist darauf zu achten, daß das Gehäuse des **AERODYNE \Omega** aus leitfähigen Kunststoff besteht. Das Gehäuse, die Vernebelkammer und der Kühlkörper sind aus Sicherheitsgründen mit den Schutzleiter PE und der pulsierenden Gleichspannungsquelle $U_{21} = 45V_{eff}$ 100Hz verbunden. Bei Messungen mit dem Oszilloskop ist ein Schutztrenntrafo zu verwenden und auf keinen Fall darf eines der oben genannten Teile mit Signal Masse in Berührung kommen.

Das Gerät wird über das Netz 230V/50Hz versorgt. Der Transformator T1 dient zur Netzabtrennung und Spannungsumsetzung. Er hat eine Primär- und drei Sekunderwicklungen.

- U₀: Netzspannung, Geräteversorgung, Sicherungen *F1* und *F2* (jeweils *800mA* Träge)
- U₁: Versorgung der Steuerelektronik, ohne Sicherung
- U₂: Versorgung des Oszillators (inkl. Piezo-Schwinger), Sicherung F3 (1,25A Träge)
- U_3 : Versorgung für Schlauchheizung (Spannungsabgriff bei 10V, 11V und 12V), Sicherung F4 (6,3A Träge)

Der Lüfter ist über die Sicherungen S1 und S2 mit 230V 50 Hz verbunden.

- <u>Spannungsversorgung Heizschlauch:</u> Über die Auswahl zwischen den Abgriffen X11 X13 am Transformator lassen sich drei Heiztemperaturen auswählen. Der gesicherte Abgriff X10 ist hier der Bezugspunkt für die drei Spannungen. Standartmäßig wird X12 vom Werk aus eingestellt. (TP4, TP5, TP6)
- Endstufenversorgung und 100Hz Komperator: Die Spannungsversorgung des Endstufenoszillators und der Sensoren erfolgt über die Abgriffe 15 und 16 am Transformator ($U_2 = 45V_{\it eff}$ 50 Hz), den Brückengleichrichter DB2 und den Kondensator C4. Es entsteht eine nicht stabilisierte pulsierende Gleichspannung von $U_{21} = 45V_{\it eff}$ 100Hz. Die pulsierende Gleichspannung U_{21} ist aus Sicherheitsgründen mit dem Schutzleiter PE verbunden. Zwischen Schutzleiter PE und dem Signal Masse liegt somit eine pulsierende Gleichspannung von $45V_{\it eff}$ 100Hz an. (TP10) Die pulsierende Gleichspannung $U_{\it acRef} = 45V_{\it eff}$ 100Hz wird über die zwei Dioden D1 und D2, die die $U_2 = 45V_{\it eff}$ 50Hz Wechselspannung gleichrichten, erzeugt. (TP3) Die pulsierende Gleichspannung $U_{\it cSens}$ (100Hz) wird am Minusanschluß des Brückengleichrichters DB2 abgegriffen und über einen Tiefpaß: L3, R55 und R56 geleitet. Die Amplitude des $U_{\it cSens}$ -Signals ist somit proportional der Stromaufnahme des Endstufenoszillators, da allein die Endstufe, durch Leistungsänderungen oder Temperaturdrifft, für Stromänderungen in diesem Schaltungsteil verantwortlich ist. (TP7)
- Elektronikversorgung Vcc: Für die Spannungsversorgung der Elektronik wird eine auf 15 V stabilisierte Gleichspannung benötigt. Dazu wird $U_1 = 15V_{eff}$ 50Hz über den Brückengleichrichter DB1 gleichgerichtet und mit den Festspannungsregler IC1 auf exakt Vcc = 15 V (± 2 %) 1,5 A stabilisiert. (MP3, MP4)

☐ *Modul 2 (Signalaufbereitung):*

Kernstück der Signalaufbereitung ist die Generierung der Ist- und Sollwertsignale zur Stromregelung. Zusätzlich wird noch ein *100Hz*-Taktsignal erzeugt.

- Strommessung und Sollwertvorgabe: Die Strommessung wird am Operationsverstärker IC5, der als Differenzverstärker mit PI-Verhalten ausgeführt ist, durchgeführt. Die Differenz zwischen konstanten 787mV und U_{cSens} ergibt das Ist-Wertsignal U_{cls} für die Stromregelung. (TP8)

 Der 3-fach Codierschalter S1 übernimmt die Einstellung der Sollwertspannung U_{cReg} am Stromregler. Der S1 hat die Funktion eines Spannungsteilers, wobei die Widerstände, zur Verringerung der pulsierenden Gleichspannung U_{acRef} , zu oder weggeschalten werden können. Die dann erforderliche Feinabstimmung übernimmt das Trimmpoti RV1. Es entstehen dabei drei Schaltstufen also drei Leistungsstufen für die Vernebelkammer. Standartmäßig ist vom Werk aus die dritte Schaltstufe, 680-700mA Stromfluß im Oszillator, eingestellt (TP2)
- <u>Taktsignal</u>: Die pulsierende Gleichspannung U_{acReg} wird zunächst über einen Spannungsteiler auf $9.5V_{eff}$ 100Hz heruntergeteilt. Die Erstellung des 100Hz-Taktsignals U_{Clk} übernimmt dann die Schmitt-Triggerstufe um IC2. (TP9, TP10, TP11)

Das Modul 3 ist das Herzstück des **AERODYNE \Omega**. Hier wird die Ultraschallfrequenz erzeugt und über die Piezomembrane an die Vernebelkammer weitergegeben. Zusätzlich wird die Leistungsregelung und der Temperaturabgleich für den Endstufenoszillator durchgeführt.

- <u>Stromreglung:</u> Die Signale U_{cReg} und U_{cls} werden am Differenzverstärker, um IC3, von einander subtrahiert. Das entstandene Differenzsignal wird für die Leistungsregelung an der Endstufe benötigt, und über den Transistor Q2, an die Endstufe weitergegeben. Der eingesetzte Differenzverstäker hat durch den Kondensator C25 im Gegenkopplungszweig PI-Verhalten. (TP2, TP8)
- Schwinger und Endstufe: Der Oszillator ähnelt der Colpitts-Schaltung, mit dem Unterschied, daß anstatt der LC-Stufe ein Schwingquarz (Piezoelement in der Vernebelkammer, über Koaxialstecker J3 am Oszillator angeschlossen) im Rückkopplungszweig eingefügt ist. Mit Hilfe des Schwingquarzes in der Transistorstufe Q5 wird die Ultraschallfrequenz von 1,65 MHz im Endstufenoszillator erzeugt. Der Transistor Q2, in Kollektorschaltung, steuert dabei den Basisstrom des Endstufentransistors Q5 und somit die Leistungsabgabe des Oszillators. (TP1)
 - Das Kontrollsignal U_{amSens} wird über den Spannungsteiler R59, D17 und R60, und den Spannungsfolger um IC3 am Emitter des Transistors Q5 abgeriffen. Es entsteht eine mit 100Hz pulsierende Gleichspannung deren Amplitude im Kurzschlußfall absinkt und im Leerlauffall ansteigt. (MP7)

Aus Sicherheitsgründen für den Patienten, zum Schutz der Vernebelkammer und des Steuergeräts wird der Oszillator im Fehlerfall über das Signal U_{oscOFF} abgeschaltet. Ist U_{oscOFF} auf HIGH, so schaltet der Transistor Q3 durch. Die Basis des Transistors Q2 wird auf Masse gezogen, somit sperrt Q2. Die Basis des Endstufentransistors Q5 wird über R31, L1, L2, R57, R58 auf GND gehalten. Die hochfrequente Ansteuerung des Q5 ist somit unterbunden.

Da am Collector des Transistors *Q*3 nun Massesignal anliegt leuchtet die gelbe LED (Stecker *ST*3).

das Signal U_{tenvLC} auf High. (MP5)

Die Sensoranpassung versorgt die Sensoren in der Vernebelungskammer mit Spannung ($45V_{\it efff}$ 50Hz Gleichspannung) und wertet die zurückgelieferten Signale aus.

- <u>Ubertemperaturkontrolle</u>: Die Temperatur wird über ein Bimetall in der Vernebelkammer kontrolliert. So lange das Bimetall geschlossen ist, liegt am Kontakt 1 des Steckers ST2 die volle Versorgungspannung U₂₁ an. Dieses Signal wird zunächst über den Spannungsteiler R44 und R47 durch 8 geteilt und über den Spannungsfolger an IC4 gepuffert. Durch den Tiefpaß R40, C20 und R68 wird der Gleichspannungsanteil gewonnen und der Schmitt-Triggerstufe um IC4 zugeführt.
 Bei Überschreitung des Bimetallschaltpunkts wird die Eingangsspannung an ST2 Kontakt 1 unterbrochen (entspricht einer Temperatur von mehr als 50°C). Somit wird der Eingang des Spannungsfolgers über R47 auf Masse gezogen, der Schmitt-Trigger schaltet
- Wasserstandskontrolle: Bei der Wasserstandskontrolle wird die Leitfähigkeit des Kontaktwassers genutzt. Solange vom Becher der Vernebelkammer über den Fühlerstift Strom fließt, liegt am Stecker ST2 Kontakt 3 nahezu die volle Versorgungspannung U_{21} an. Dieses Signal wird über die Z-Diode D20 um 30V reduziert und über den Spannungsteiler R45 und R46 durch 2,2 geteilt. Anschließend erfolgt eine Pufferung am Spannungsfolger der Schmitt-Triggerstufe um IC4. Durch den Tiefpaß R41, C21 und R67 wird der aktuelle Gleichspannungsanteil gewonnen und der Schmitt-Triggerstufe um IC4 zugeführt. Befindet sich zu wenig oder kein Wasser in der Vernebelkammer, liegt an Stecker ST2 Kontakt 3 keine Spannung an. Der Widerstand R69 mit 5,6 $M\Omega$ zwischen der Spannungsversorgung U_{21} und der Z-Diode D20 kommt nun zur Geltung. Die Z-Diode sperrt da weniger als 30V zur Verfügung stehen und der Eingang des Spannungsfolgers wird über R46 auf Masse gezogen. Somit schaltet der Trigger das Signal U_{waterM} auf High. (MP6)

\prod *Modul 5 (Betriebskontrolle):*

Das Schaltungsteil Betriebskontrolle dient dem Schutz der Endstufe, des Ultraschallverneblers und des Patienten. Die Betriebskontrolle schaltet im Fehlerfall über das Signal U_{oscOFF} (=HIGH) die Endstufe ab.

Über eine entsprechende Widerstands- und Diodenbeschaltung (R32, R38 und R35) liefert U_{oscOFF} bereits die richtige Schaltspannung für Q3. Dieses Schaltungsteil wirkt wie ein ORGate.

- Leerlauf- und Kurzschlußkontrolle: Über das Kontrollsignal U_{amSens} und die beiden Schmitt-Trigger um IC2, wird der Leerlauf- und der Kurzschlußfehlerfall kontrolliert. Da für die beiden Trigger nur der Gleichspannungsanteil interessant ist wird die 100Hz-Schwingung über die RC-Glieder R11, R12 und C18 gefiltert. Der gemeinsame Referenzspannungsast, D23, R6 und D24, der Trigger legt die Schaltspannungen für Leerlauf auf 11,8V und für Kurzschluß 1,7V fest. Im Fehlerfall: bei Leerlauf, Kurzschluß und $U_{waterM} = HIGH$ wird über die Dioden D4, D5 und D9 der Transistor Q1 geschaltet und der Kondensator C5 über Q1 entladen. Die Schmitt-Triggerstufe um IC2 schaltet somit U_{oscOFF} auf HIGH. Da der Kurzschluß- oder Leerlauffall der Endstufe im abgeschaltenen Zustand nicht erkannt werden kann, wird nun die Endstufe periodisch nach 1,2s für 15 ms bis 30ms eingeschalten. Die im Kurzschlußfall entstehende Verlustleistung kann von Q5 ohne maßgebliche Temperaturerhöhung abgeführt werden.
- Endstufentemperaturkontrolle: Der PTC-Widerstand RT1 liegt im Referenzspannungsast der Schmitt-Triggerstufe um IC2. Bei einer Übertemperatur von 73 bis $80\,^{\circ}\mathrm{C}$ überschreitet der Referenzspannungswert die Eingangspannung ($U_{in}=10V$) des Schmitt-Triggers und verursacht einen Schaltvorgang; U_{oscOFF} wird auf HIGH geschalten. Der Gegenkopplungswiderstand R2 bewirkt eine Schalthysterese der Triggerstufe und somit die Funktion, daß erst nach einer Abkühlung um 4 bis 8K die Endstufe wieder eingeschalten wird.
- <u>Wasserstands- und Bechertemperaturkontrolle:</u> Treten diese Fehlermeldungen über die Signale U_{tempLC} und U_{waterM} auf, werden die beiden Signale über die Dioden D10 und D11 direkt auf U_{oscOFF} weitergeleitet.
- Pausenzeit beim Einschaltvorgang: Beim Einschalten des Geräts, hat die Schmitt-Triggerstufe um IC2 am Ausgang ein HIGH-Signal und somit liegt auch U_{oscOFF} auf HIGH. Über die Taktpulse von U_{Clk} wird der Kondensator C5 am Eingang des Triggers aufgeladen bis die Referenzspannung des Triggers überschritten wird. Der Ladevorgang wird über die Z-Diode D8, die parallel zu C5 geschalteten ist, auf 10V beschränkt. Eine Pausenzeit von etwa 1 bis 3s wird generiert.

Betriebsverhalten:

Ausgehend von der Schaltungsbeschreibung des **AERODYNE \Omega** läßt sich schlüssig das Verhalten des Gerätes beim Betrieb in den unterschiedlichen Anwendungsgebieten folgern. Bevor das Gerät in Betrieb genommen wird, muß die Vernebelkammer bis zur Makierung mit Kontaktwasser (Aqua Dest.) aufgefüllt werden. Anschließend ist die Vernebelkammer mit einer **RESPIFLO** Sterilwasserkapsel abzuschließen.

Wird das Gerät eingeschaltet, so leuchtet der Netz-Schalter mit Betriebsanzeige grün und das Gebläse im Gerät ist zu hören. Bei dem Anschluß eines Heizschlauches wird dieser erwärmt. Nach Ablauf einer Totzeit von 1-3 Sekunden beginnt das Gerät, sofern kein Fehlerfall vorliegt, mit der Vernebelung des Wassers in der Sterilwasserkapsel.

Im normalen Betriebsverhalten wird nun Atemluft durch die Sterilwasserkapsel geblasen und befeuchtet.

Wird bei eingeschaltetem Gerät die Vernebelkammer abgenommen, oder fehlt in der Vernebelkammer Kontaktwasser, so leuchtet die Störungsanzeige auf. Wird die Vernebelkammer wieder aufgesetzt oder das Kontaktwasser in der Vernebelkammer ergänzt, so erlischt die Störungsanzeige automatisch und das Gerät beginnt mit der Vernebelung.

KAPITEL 4

SICHERHEITSTECHNISCHE KONTROLLE

- Sichtprüfung
- Mechanische Prüfung
- Funktionstest
- Elektrische Sicherheit
- Sicherheitstechnische Überprüfung
- Abschlußbericht

Hinweis:

Bei der Sicherheitstechnischen Kontrolle (STK) ist keine Öffnung des Gerätes vorgesehen. Sämtliche anfallende Arbeiten sind bei ungeöffnetem Gerät durchzuführen!

Zunächst sollen die wichtigsten Bestandteile der STK im Detail erläutert werden. Die vollständige Kontrolle wird anhand eines Vordruckes für einen Prüfbericht verdeutlicht.

Sichtprüfung:

*	1	☐ Ist das Kunststoffgehäuse intakt? (keine Risse oder Brüche)
*	2	∏ Sitzt die Netzkabelzugentlaßtung fest?
*	3	∏ Ist die Netzkabelisolierung beschädigt?
*	4	∏ Ist der Originalnetzstecker (Vergossen!!) montiert?
*	5	∏ Sind an der Vernebelkammer Beschädigungen?
*	6	∏ Ist der Netzschalter mit Betriebsanzeige intakt?
*	7	∏ Ist die Anzeige Störung intakt?
*	8	∏ Ist die Gebrauchsanweisung komplett?
*	9	∏ Ist der Luftfilter vorhanden und in Ordnung?
*	10	∏ Ist der Bakterienfilter vorhanden und in Ordnung?
*	11	∏ Fehlen Verbindungsschrauben?
*	12	☐ Sind die Etiketten/Nummern vorhanden und in Ordnung?
*	13	☐ Wie ist der optische Gesamteindruck des Gerätes?

Mechanische Prüfung:

- * 1 ☐ Sind die Gehäuseteile fest miteinander verbunden?
- * 2 ∏ Sitzt die Anschlußbuchse für den Heizschlauch fest auf dem Gehäuse?

Funktionstest:

Hinweis:

Der Funktionstest darf nur mit Wasser in der Vernebelkammer durchgeführt werden. Dabei sollte die Vernebelkammer abgedeckt werden, am Besten eignet sich eine **RESPIFLO** Sterilwasserkapsel.

- * 1 ∏ Gerät einschalten
 - Leuchtet die gelbe LED Störung kurz auf (ca. 1-3 sec.)?
 - Leuchtet die Grüne Lampe im Netzschalter dauernd?
 - Läuft der Lüfter im Gerät?
 - Vernebelt das Gerät?
- * 2 ∏ Schwingerleistung überprüfen
 - Spritzt die Wassersäule über die Oberkante der Vernebelkammer?
- * 3 ∏ Füllstandsensor testen
 - Entfernen Sie so viel Wasser aus der Vernebelkammer, daß die Metallspitze des Füllstandssensors nicht mehr mit Wasser in Berührung kommen kann.
 - Schalten Sie das Gerät ein.
 - Leuchtet die gelbe LED Störung?

- Ist der Schwinger abgeschalten?
- * 4 ∏ Kammerübertemperaturabschaltung kontrollieren
 - **RESPIFLO** Sterilwasserkapsel geschlossen, ohne Anschlußschläuche, aufsetzen, ca. 1-2 Stunden warten.
 - Leuchtet die Gelbe LED Störung?
 - Ist der Schwinger abgeschalten?
- * 5 ∏ Schlauchheizung überprüfen
 - Liegt eine Leerlaufspannung von etwa 12 V_{AC} an der Buchse an?

Achtung:

Bei Abweichung der Prüfergebnisse muß das **AERODYNE** Ω durch die Firma KENDALL GmbH oder eine von uns ausdrücklich dazu ermächtigte Stelle überprüft werden.

Elektrische Sicherheit:

Die Prüfung der elektrischen Sicherheit erfolgt gemäß VDE mit dem Servicemeßgerät. Die Meßgrenzen gestalten sich wie folgt:

* Schutzleitwiderstand: $< 0.1 \Omega$ * Ersatz-Geräte-Ableitstrom: $< 500 \mu A$ * Isolationswiderstand: $> 5 M\Omega$ * Leistungsaufnahme: < 115 VA

Sicherheitstechnische Überprüfung:

Diese Überprüfung darf nur von autorisiertem Personal durchgeführt werden. Die Reihenfolge der Vorgehensweise orientiert sich am zu erstellenden Prüfprotokoll. Neben allgemeinen Angaben (Auftrags-Nr., Betreiber, Geräteart, Typ, Seriennummer, Ident-Nr., Prüfdatum) enthält dieser Bericht die Ergebnisse der Sichtprüfung und der elektrischen Sicherheit. Im Abschlußbericht wird der Gesamtzustand des Gerätes beurteilt.

Muster Prüfprotokoll für Sicherheitstechnische Kontrolle nach Herstellerangaben:

PRÜFPROTOKOLL AERODYNE OMEGA für die sicherheitstechnische Kontrolle nach Herstellerangaben

		•				i.O.	n. i. O.
1. Auftra	ags-Nr.:				13. Funktionsprüfung		
2. Betre	eiber:				 Gerät einschalten Gelbe LED Störung leuchtet kurz auf (ca. 2 sec.) 	0	0
					 Grüne Lampe im Netzschalter 		
					leuchtet dauernd	0	0
Kun	don Nr.				Lüfter im Gerät läuftGerät vernebelt	0	0
Null	den-Nr.:					O	O
3. Unter	rschrift:				 Schwingerleistung Wassersäule über Oberkante Verneblerkammer 	0	0
4. Gerä	teart:	Ultraschallvernebler			Füllstandsensor	Ü	Ü
5. Herst	teller:	KENDALL GmbH 93333 Neustadt/Donau			Abschaltung SchwingerGelbe LED leuchtet	0	0
					 Kammerübertemperaturabschaltung 		
6. Typ:		Aerodyne Omega			 Temperatur auf Höhe Kammer- 		
7. Risik	aklaaaa:	llo			boden <= 60 °C	0	0
7. HISIK	okiasse.	IId			Abschaltung Schwinger Abschaltung Schwinger	0	0
8. Serie	n-Nr.:				Gelbe LED leuchtet	0	0
		-			Schlauchheizung ab Seriennr. 1151		
9. Ident	-Nr.:				 Leerlaufspannung an der Buchse ca. 12 VAC 	0	0
10. Prüfd	datum:					-	
			i.O.	n. i. O.	14. Elektrische Sicherheit		
44 6: 1			1.0.	11. 1. 0.			
11. Sich	tprutung				VDE-Prüfung Och telefolisierung	0	0
- G	ehäuse		0	0	SchutzleiterwiderstandAbleitstrom	0	0
		lummern	Ö	Ö	Isolationswiderstand	0	0
	etzschalt		Ö	Ö	isolationswiderstand	0	Ŭ
– Ar	nzeige St	törung	0	0			
	etzleitung		0	0	15. Abschlußbericht		
		e/Stecker	0	0	 Gerät ist voll funktionsfähig 	0	0
	erneblerk		0	0	und ohne Mängel		
	ebraucns uftfilter	sanweisung	0	0			
	akterienfi	lter	0	0	4C Nijehote Dujfuma.	_	1 -
50	211101101111	itoi	· ·	Ü	16. Nächste Prüfung:	4 \ 96	9 2/
12. Mech	nanische	e Prüfung				95	ahr
_ \/a	arhindun	g der Gehäuseteile	0	0			chste VDALL
		der HF-Buchse	0	0			prüfung
		der Anschlußbuchse	Ö	Ö		M. M.	onat
fü	r Heizsch	nlauch ab Seriennr. 1151	0	0		\$ 5 6	7 8 9
						·/ 4 / 4	. • / • /
					Datum: Ort:		
					Unterschrift:		
					Unterschrift:(Betreiber	-1	
					(Deficipe)	1	

 $^{1. \} Original = Kunde; \\ 2. \ blau = Elektroprod.; \\ 3. \ rosa = Auftragsabt.; \\ 4. \ gelb = Service techn.$

KAPITEL 5

WARTUNG

- Sichtprüfung
- Mechanische Prüfung
- Funktionstest
- Elektrische Sicherheit
- Pflege und WerterhaltungAbschlußbericht

Achtung:

Die Wartung des AERODYNE Ω wird bei geöffnetem Gerät durchgeführt. Bei sämtlichen anfallenden Arbeiten sind die vorgeschriebenen Sicherheitsmaßnahmen unbedingt zu beachten!

Die Wartung entspricht dem Inhalt nach der Sicherheitstechnischen Kontrolle (STK). Im Unterschied zur STK wird hier das Gerät zur eingehenderen Prüfung des Zustandes geöffnet. Die vollständige Reihenfolge der Arbeiten wird anhand eines Vordruckes für einen Wartungsbericht verdeutlicht.

Sichtprüfung:

*	1	☐ Ist das Kunststoffgehäuse intakt? (keine Risse oder Brüche)
*	2	∏ Sitzt die Netzkabelzugentlastung fest?
*	3	∏ Ist die Netzkabelisolierung beschädigt?
*	4	∏ Ist der Originalnetzstecker (Vergossen!!) montiert?
*	5	∏ Sind an der Vernebelkammer Beschädigungen?
*	6	∏ Ist der Netzschalter mit Betriebsanzeige intakt?
*	7	∏ Ist die Anzeige Störung intakt?
*	8	∏ Ist die HF-Buchse/Stecker intakt?
*	9	∏ Ist die Gebrauchsanweisung komplett?
*	10	∏ Ist der Luftfilter vorhanden und in Ordnung?
*	11	∏ Ist der Bakterienfilter vorhanden und in Ordnung?
*	12	∏ Fehlen Verbindungsschrauben?
*	13	∏ Sind die Etiketten/Nummern vorhanden und in Ordnung?
*	14	∏ Wie ist der optische Gesamteindruck des Gerätes?

Mechanische Prüfung:

- * 1 ∏ Sind die Gehäuseteile fest miteinander verbunden?
- * 2 ∏ Sitzt die HF-Buchse fest auf dem Gehäuse?
- * 3 ☐ Sitzt die Anschlußbuchse für den Heizschlauch fest auf dem Gehäuse?

Funktionstest:

Hinweis:

Der Funktionstest darf nur mit Kontaktwasser in der Vernebelkammer durchgeführt werden. Dabei sollte die Vernebelkammer abgedeckt werden, am Besten eignet sich eine **RESPIFLO** Sterilwasserkapsel.

- * 1 ∏ Gerät einschalten
 - Leuchtet die gelbe LED Störung kurz auf (ca. 1-3 sec.)?
 - Leuchtet die Grüne Lampe im Netzschalter dauernd?
 - Läuft der Lüfter im Gerät?
 - Vernebelt das Gerät?

- * 2 ∏ Schwingerleistung überprüfen
 - Spritzt die Wassersäule über die Oberkante der Vernebelkammer?
- * 3 ∏ Füllstandsensor testen
 - Entfernen Sie so viel Wasser aus der Verneblerkammer, daß die Metallspitze des Füllstandsensors nicht mehr mit Wasser in Berührung kommen kann.
 - Schalten Sie das Gerät ein.
 - Leuchtet die gelbe LED Störung dauernd?
 - Ist der Schwinger abgeschalten?
- * 4 ∏ Kammerübertemperaturabschaltung kontrollieren
 - RESPIFLO Sterilwasserkapsel geschlossen, ohne Anschlußschläuche, aufsetzen, ca. 1-2 Stunden warten.
 - Leuchtet die Gelbe LED Störung?
 - Ist der Schwinger abgeschalten?
- * 5 ∏ Schlauchheizung überprüfen
 - Liegt eine Leerlaufspannung von etwa 12 V_{AC} an der Buchse an?

Achtung:

Bei Abweichung der Prüfergebnisse muß das **AERODYNE** Ω durch die Firma KENDALL oder durch eine von uns autorisierte Stelle überprüft werden.

Elektrische Sicherheit:

Die Prüfung der elektrischen Sicherheit erfolgt gemäß VDE mit dem Servicemeßgerät. Die Meßgrenzen gestalten sich wie folgt:

* Schutzleitwiderstand: $< 0.1 \Omega$ * Ersatz-Geräte-Ableitstrom: $< 500 \mu A$ * Isolationswiderstand: $> 5 M\Omega$ * Leistungsaufnahme: < 115 VA

Pflege und Werterhaltung:

Die Außenflächen des **AERODYNE \Omega** können mit einem alkoholfreien Produkt desinfiziert werden, z. B. 3,5% igem Clorina (Einwirkzeit 1 Stunde). Die Vernebelkammer kann bei 121°C oder 134°C autoklaviert werden. Die Steckkontakte der Vernebelkammer sollen jeweils nach 6 Wochen gereinigt und mit Kontaktspray versehen werden.

Em	pfehl	ung	für	Umfang	und	Fristen	wieder	kehren	der	Kontrol	len:

<u>Fristen:</u>

Jährlich

Umfang:

1. Sichtprüfung:

Beurteilung des geforderten technischen Zustands

2. Funktionsprüfung:

Alarmfunktionen

3. Elektrische Sicherheit:

Ersatzableitstrom und Schutzleiterprüfung nach VDE 0750

Servicestand: 02/96

Muster Prüfprotokoll für Wartung nach Herstellerangaben:

PRÜFPROTOKOLL AERODYNE OMEGA für die Wartung nach Herstellerangaben

	_					i.O.
1. Auftr	ags-Nr.:			13. Mechanische Prüfung		
2. Betre	eiber:			 Verbindung der Gehäuseteile Fester Sitz der HF-Buchse Fester Sitz der Anschlußbuchse für Heizschlauch Fester Sitz aller Baugruppen 	0 0 0 0	O O O
Kun	den-Nr.:			14. Funktionsprüfung		
3. Unte	rschrift:			 Gerät einschalten 		
4. Gerä				 Gelbe LED Störung leuchtet kurz auf (ca. 2 sec.) Grüne Lampe im Netzschalter 	0	0
5. Hers	teller: KENDALL GmbH 93333 Neustadt/Donau			leuchtet dauernd Lüfter im Gerät läuft Gerät vernebelt	0 0 0	0 0 0
6. Typ:7 Risik	Aerodyne Omega			Schwingerleistung Wassersäule über Oberkante Verneblerkammer	0	0
				Füllstandsensor	O	O
 Serie Ident 				Abschaltung Schwinger Gelbe LED leuchtet	0	0
10. Prüfo				KammerübertemperaturabschaltungTemperatur auf Höhe Kammer-		
		i.O.	n. Instands. i.O.	boden < 60 °CAbschaltung SchwingerGelbe LED leuchtet	0 0 0	0 0 0
– G – Et – Ni – Ai	t prüfung ehäuse tiketten/Nummern etzschalter nzeige Störung	0 0 0	0 0 0	 Schlauchheizung Leerlaufspannung an der Buchse ca. 12 VAC 	0	0
– HI – Ve – G – Lu – Ba – In	etzleitung F-Buchse/Stecker erneblerkammer ebrauchsanweisung uftfilter akterienfilter terne Verdrahtung E Etikett	0 0 0 0 0 0	0 0 0 0 0 0 0 0	15. Elektrische Sicherheit VDE-Prüfung Schutzleiterwiderstand Ableitstrom Isolationswiderstand 16. Benötigte Ersatzteile siehe Anlage	0 0 0	0 0 0
– Ül	trische Prüfung berprüfung folgender Meßpunkte MP4 - MP3 (15 VDC ± 0,4 V)	0	0	17. Abschlußbericht — Gerät ist voll funktionsfähig		
Sc (K	berprüfung chwinger-Unterbrechung (oaxstecker-Platine abschließen)	0	0	und ohne Mängel	0	0
– Ül Sc (K	iörung leuchtet berprüfung chwinger-Kurzschluß (urzschluß an Koaxbuchse-Platine) iörung leuchtet	0	0	18. nächste Prüfung:	900	96 9 Jahr Nächste KENDALL Überprüfung
Überprüfung Schwingerstrom (Brücke J1 entfernen) Stromaufnahme 680 mA/AC - 700 mA/AC		0	0			Monat 9 9 7 8 9 9
				Datum: Ort:		
				Unterschrift:		
				Unterschrift:(Betreiber)	

1. Original = Kunde; 2. blau = Elektroprod.; 3. rosa = Auftragsabt.; 4. gelb = Servicetechn.

i.O. n. Instands.

KAPITEL 6

FEHLERMELDUNGEN UND FEHLERSUCHE

- Fehlermeldungen
- Fehleranalyse und Lokalisierung
- Fehlerbehebung

Fehlermeldungen:

Bei Aufleuchten der gelben LED Störung oder anderen Störungen bitte zuerst folgende Punkte überprüfen und Störung gegebenfalls selbst beheben.

Ausfallerscheinung	Fehlerursache	Fehlerbeseitigung	
Keine Vernebelung in der Kapsel, Störungsanzeige leuchtet	Kontaktwasserstand zu niedrig	Verneblerkammer bis zur Mar- kierung mit Aqua Destillata nachfüllen	
	Kapsel nicht richtig aufgesetzt	Kapsel richtig bis zum Anschlag aufsetzen	
Keine Vernebelung in der Kapsel, Störungsanzeige leuchtet	Temperatur der Verneblerkam- mer zu hoch	Vorratsflasche leer, wechseln	
	Temperatur der Endstufe zu hoch	Zustand des Filters (Geräteunterseite) prüfen, ggf. wechseln	
	Schwingquarz defekt	Gerät durch autorisiertes Fach- personal oder von Firma KEN- DALL überprüfen lassen	
	Elektronik defekt	Gerät durch autorisiertes Fach- personal oder von Firma KEN- DALL überprüfen lassen	
Keine Vernebelung in der Kapsel, Störungsanzeige leuchtet nicht	Kapselwasserstand zu hoch oder zu niedrig	Flüssigkeitsniveau korrigieren	
	Einstichdorn in der Kapsel befindet sich direkt über dem Schwinger	Position des Einstichdorns korrigieren	
	Sicherung defekt	Gerät außer Betrieb nehmen und Fa. KENDALL benachrichtigen	
Kein Aerosolaustritt am Patien-	Patientenschlauch hängt durch	Schlauchposition korrigieren	
tenschlauch, obwohl Nebel in der Kapsel erzeugt wird	Luftfilter verstopft	Luftfilter erneuern	
	Wasser im Bakterienfilter	Bakterienfilter erneuern	
Überlaufen der Kapsel	Eintritt von Fremdluft in die Vorratsflasche	Einstichdorne tiefer in die Vor- ratsflasche drücken, evtl. neue Flasche verwenden	
Blockieren des automatischen Auffüllens der Kapsel	Wasserverschluß im Überleitungssystem	Aufhebung des Unterdrucks durch leichtes Drücken der Vor- ratsflasche	
	Verschlußklemmen geschlossen	Prüfen, ob weiße Verschluß- klemmen geöffnet sind	
Wasseraustritt zwischen Kapsel und Verneblerkammer	Beschädigung des Kapselmem- bran	Neue Kapsel verwenden	

Fehleranalyse und Lokalisierung:

Der nun folgende Abschnitt befaßt sich mit Fehlern bzw. Schäden in der Elektronik und deren Lokalisierung. Auf eine vollständige Dokumentation aller möglicher Fehlerursachen ist verzichtet worden, hierbei sei auf das Kapitel 3 (Funktionsbeschreibung) verwiesen.

Erfahrungen bei der Fehlersuche:

- Immer induktive Vorgehensweise anwenden (vom Groben ins Feine).
- * Immer systematisch vorgehen.
- * Funktionszusammenhänge mit Hilfe des Blockschaltbildes abklären.
- * Gerätezustand und Alarmsituation analysieren (Abschnitt Fehlermeldungen durchchecken, Gerät auf Brand- und Hitzespuren oder mechanische Schäden untersuchen)
- * Abklären ob Fremdverschulden für Fehlersituation vorliegt.
- * Abklären des Szenario, das zum Fehlerfall führte, zur Klärung der Fehlerursache.
- * Hat nicht autorisiertes Personal das Gerät geöffnet?
- * Sind zusätzlich Schaltungseingriffe vorgenommen worden?
- * Elektronik auf korrekte Spannungsversorgung überprüfen
- * korrekte Gerätefunktionen nur bei korrekten Umweltbedingungen möglich (Vernebelkammer wie vorgeschrieben mit Kontaktwasser füllen. Abdecken nicht vergessen!)
- * Sind alle Leitungsverbindungen in Ordnung?
- * Häufigste Fehlerursache sind Halbleiterbauelemente. Zunächst einfache Halbleiterbauelemente (Dioden, Transistoren, ..., IC's) kontrollieren.

Für die Messungen und die Überprüfung der Detailfunktionen und der dazugehörigen Schaltungsknotenpunkte sind im wesentlichen folgende Meßmittel und Meßgeräte erforderlich:

- * Regeltrenntrafo 230V
- * Multimeter
- Zweikanaloszilloskop
- * VDE-Meßgerät
- * Antistatik-Prüfplatz (Handgelenk-Erdungsband)

In Kapitel 7 "Zeichnungssätze" sind sämtliche Zeichnungsunterlagen für die Fehlersuche eingeordnet. Der Stromlaufplan ist mit allen wichtigen Spannungspegeln gezeichnet. Zusätzlich sind an wichtigen Schaltungspunkten die Signalverläufe als Oszillogramme beigelegt. Somit ist zur Fehlersuche eine gezielt stufige Vorgehensweise anhand dieser Aufzeichnungen möglich.

Hinweis:

Es soll nur, aus Sicherheitsgründen, die fehlerhafte Detailfunktion lokalisiert werden, um danach das Modul über die Firma KENDALL auszutauschen.

Hinweis:

Verschiedene Signale, vor allem in der Detailfunktion Stromregelung/Oszillator, sind mit Meßspitzen ohne größeren Aufwand nicht mehr erreichbar. Daher sind die hier beschriebenen Meßpunkte, zur Fehlersuche, nach zwei Richtlinien ausgewählt worden:

- * Zur Überprüfung der Detailfunktion ausreichend
- * Ohne größeren Aufwand zu messen

Modul 1 (Spannungsversorgung):

Meßpunkt:	Signal/Sollspannung:	Oszillogramm:	Mögliche Fehlerursachen:
TP4	Heizspannung 10 V _{eff} 50 Hz	Osz. 1	F3
TP5	Heizspannung 11 V _{eff} 50 Hz	Osz. 2	F3
TP6	Heizspannung 12 V _{eff} 50 Hz	Osz. 3	F3
TP12	$U_{21} = 64 \text{ V}_{S} 100 \text{ Hz}$	-	F4, DB2
TP3	$U_{acRef} = 64 V_s 100 Hz$	Osz.4	F4, D1, D2, DB2
TP7	$U_{cSens}^{accel} = 400 \text{ mV}_{S} 100 \text{ Hz}$	Osz.5	F4, DB2
MP3	\overrightarrow{GND} , $\overrightarrow{VSS} = 0$ \overrightarrow{V}	-	DB1
MP4	$VCC = 15 V_{DC}$ Festspannung	-	DB1, IC1, C2, C3

Modul 2 (Signalaufbereitung):

Meßpunkt:	Signal/Sollspannung:	Oszillogramm:	Mögliche Fehlerursachen:	
TP2	II _ 4 V 100 Uz	007.6	RV1 und S1 verstellt	
	$U_{cReg} = 6 V_s 100 Hz$	Osz. 6		
TP8	$U_{cls} = 3.5 V_s 100 Hz$	Osz. 7	IC5, D25	
TP13	Ref. Sig. Strommes. 0.78 V=	-	IC5,	
TP9	In S-Trigger	Osz. 8	IC2, C28	
TP10	Ref. Span. Taktgenerator	Osz. 9	IC2, D19	
TP11	Taktsignal	Osz. 10	IC2	
MP9	Ladekurve C5, Einschalt-	Osz. 11	D7, C5, D8, Q1, D3	
	vorgang			

Modul 3 (Stromregelung/Oszillator):

Meßpunkt:	Signal/Sollspannung:	Oszillogramm:	Mögliche Fehlerursachen:
TP1	Oszillatorschwingung 1.65 MHz	Osz. 12	Schwinger defekt, Kabelbruch, Q5, D16, Q2, Q3, D13, IC3
MP7	U _{amSens} kont. Oszillator	Osz. 13	IC3

Modul 4 (Sensoranpassung):

Meßpunkt:	Sollspannung/Verlauf:	Oszillogramm:	Mögliche Fehlerursachen:
MP5	$U_{tempLC} = 0 \text{ V (Normalb.)}$	-	IC4, D15, Bimetall defekt,
MP6	$U_{\text{tempLC}} = 0 \text{ V (Normalb.)}$ $U_{\text{tempLC}} = 15 \text{ V (Übertemp.)}$ $U_{\text{waterM}} = 0 \text{ V (Normalb.)}$	-	Kabelbruch IC4, D20, D14, Kabelbruch
TP14	$U_{\text{waterM}}^{\text{WaterM}} = 15 \text{ V (o. Wasser)}$ Ref. Sig. S-Trigger 3,5 V (Normalbetrieb)	-	R36, R37, R42, R43

Modul 5 (Betriebskontrolle):

Meßpunkt:	Sollspannung/Verlauf:	Oszillogramm:	Mögliche Fehlerursachen:
TP15	Ref. Sig. Kurzschluß 1.7 V	-	D23, R6, D24, R79, IC2
TP16	Ref. Sig. Leerlauf 11.8 V	-	D23, R6, D24, IC2
TP17	S-Trig. Leerlauf Normalb. 0 V	-	IC2, C18, D18
	ohne Vernebelk. 15 V		
TP18	S-Trig. Kurzschluß (Normal.)	-	IC2, C18, D18
	0 V		
MP8	S-Trigger T-Kont. Q5	Osc. 14	RT1, IC2, D6
	Einschaltvorgang 15 V		
	Normalbetrieb 0 V		

Fehlerbehebung:

Der systematischen Vorgehensweise bei der Fehlerlokalisation soll eine gezielte Fehlerbeseitigung folgen. Dabei ist wie folgt vorzugehen:

- * kleine Fehler, wie Leitungsunterbrechungen, schlechte Kontakte usw., können an Ort und Stelle behoben werden.
- * Ist der Fehler eindeutig auf einen schaltungstechnischen Defekt zurückzuführen, so ist die Reparatur <u>nur durch KENDALL</u> durchzuführen, oder die komplette Baugruppe auszutauschen. Die entsprechenden Bestellnummern der Ersatzteile sind aus dem Kapitel 7 Zeichnungssätze zu entnehmen.

Nach erfolgtem Austausch eines defekten Moduls oder nach der Behebung kleiner Fehler ist aus Sicherheitsgründen eine vollständige Wartung in allen Punkten durchzuführen. Erst danach darf das reparierte Gerät wieder zum Betrieb freigegeben werden.

KAPITEL 7

ZEICHNUNGSSÄTZE

- Teileblatt, Ersatzteile und Zubehör
- Stromlaufpläne
- Bestückungspläne
- Explosionszeichnung
- Einbauanweisung Ultraschallschwinger,
 Sichtprüfung und Funktionsprüfung
- Oszillogramme

Teileblatt:

Das Teileblatt für das **AERODYNE Ω** Typ "b" ist gültig ab der Serien-Nr.: 2500 (**CE**-Geräte).

Gehäuseteile, Netzkabel:

Pos. Nr.:(1

21	517 100	Gehäuseunterteil
1	517 101	Gehäuseoberteil
12	517 102	Luftleitplatte
4	517 106	Schutzgitter aus Aluminium für Lufteintritt
18	517 112	Gerätefuß
17	517 122	Netzanschlußleitung 2,5 m

Elektronik, Lüfter, Kabelbäume:

27	517 200	Leiterplatte komplett mit Endstufenmodul
27	517 210	Leiterplatte komplett mit Endstufenmodul (im Austausch)
/	517 201	Endstufenmodul
28	517 105	Axiallüfter 230 VAC/50 Hz
5	517 121	Kabelbaum-Grundgerät 6-teilig komplett
42	517 164	Kabelbaum-Vernebelkammer komplett
27	517 400	Elektronik Typ "b"
27	517 410	Elektronik Typ "b" (im Austausch)
5	517 131	Kabelbaum-Grundgerät 6-teilig Typ "b"
42	517 174	Kabelbaum-Vernebelkammer Typ "b"
15	517 209	Signalleuchte "Störung"

Bedienteile, Netzfilter, Etikett:

14	517 103	Druckschalter Marquart
3	517 104	Dichtung für Druckschalter
29	517 107	Funkentstörfilter
/	517 051	Typenetikett ohne Serien-Nr.

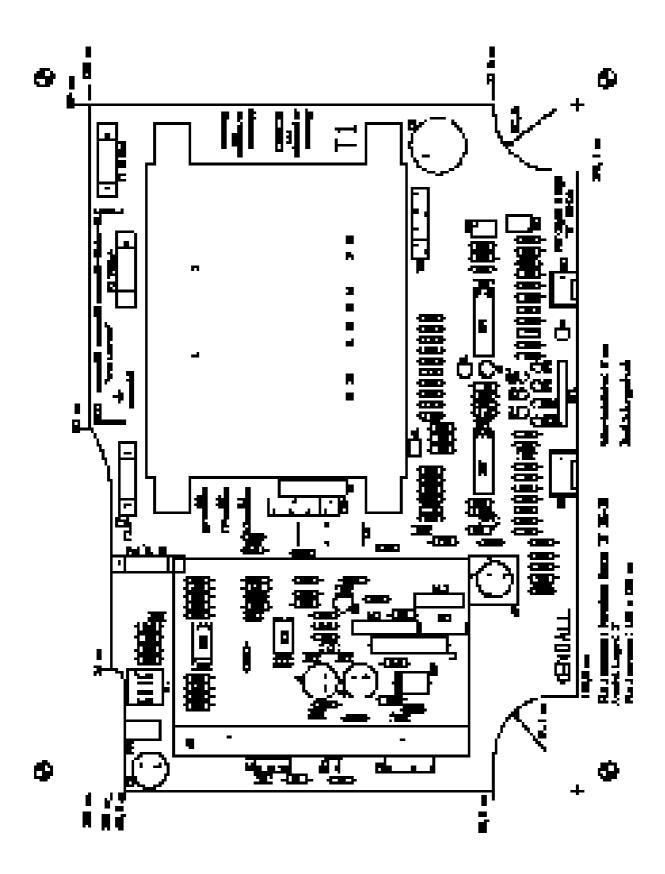
Montagematerial, Verbrauchsmaterial, Zubehör:

24	517 108	Flachsteckverteiler 6-fach
7	517 109	Flachsteckverteiler 2-fach
23	517 110	Erdungssymbol
26	517 111	Ejot PT-KB-Kreuzschraube
		Befestigung Elektronik/Luftleitplatte
20	517 113	Innensechskanntschraube für Befestigung Gerätefüße

⁽¹⁾ Siehe Explosionszeichnung

Pos	N	r	
1 00.	T .N	т.	٠

19	517 114	Unterlegscheibe M5 verzinkt für Gerätefüße
22	517 115	Federring M4 verzinkt
/	517 116	Federring M5 verzinkt
25	517 117	Zahnscheibe M4
30	517 118	LinsSenk-Kreuzschraube M3*8
44	517 119	LinsZylKreuzschraube M4*8
43	517 120	LinsZylKreuzschraube M4*12
6	517 125	Ferrithülse mit Gehäuse Typ "b"
/	517 211	Feinsicherung T 6,3 A
10	517 212	Klinkenbuchse
/	515 312	Feinsicherung T 800 mA
/	7710	Bakterienfilter
8	18608	Luftfilter (1VE = 5 Stück)
/	18604	beheizb. Patientenschlauch
/	18607	Schlauchhalterung


Vernebelkammer:

2	517 150	Verneblertopf
31	517 151	Bodenplatte für Verneblerkammer
32	517 152	Flachdichtung für Bodenplatte
11	517 153	Sechskantmutter für Befestigung HF-Buchse/Stecker
33	517 156	Suchhülse 19,6/DA = 10 mm
34	517 161	Senk-Kreuz-Schraube M4*12
35	517 162	Senk-Kreuz-Schraube M4*30
36	517 202	Schwinger
37	517 300	Fühlerstift komplett
/	18612	Verneblerkammer komplett
/	517 301	Verneblerkammer komplett im Austausch
/	599 020	Fächerscheibe M4 Typ "b"
2	517 170	Verneblertopf Typ "b"
39	517 171	Anpressring Typ "b"
41	517 175	Wago-Engklemme mit Befestigung Typ "b"
41	517 176	Wago-Klemme mit Befestigung Typ "b"
41	517 177	Abschlußplatte für Wago-Klemme Typ "b"
/	18614	Verneblerkammer Typ "b"
/	517 302	Verneblerkammer komplett im Austausch "b"

Ersatzteile und Zubehör:

	Waren-Nr.:	
RESPIFLO Kapsel mit 145 ml sterilem Aqua Destillata zur Inhalation, gemäß USP	2598-06	
RESPIFLO S Kapsel mit 145 ml steriler, isotonischer Kochsalzlösung zur Inhalation, gemäß USP	2601-06	
RESPIFLO UN 1 RESPIFLO Kapsel mit 145 ml sterilem Aqua Destillata zur Inhalation, gemäß USP 1 Universalflasche mit 1500 ml sterilem Wasser zur Inhalation, gemäß USP 1 RESPIFLO UN Überleitungssystem	21532-06	
RESPIFLO UN Überleitungssystem	2642-06	
RESPIFLO S Universalflasche 500 ml 1000 ml 1500 ml sterile isotonische NaCl-Lösung zur Inhalation	25009-06 210009-06 215009-06	
RESPIFLO S Universalflasche 500 ml 1000 ml 1500 ml sterilem Aqua Destillata zur Inhalation, gemäß USP	2500-06 21000-06 215000-06	
Bakterienfilter	7710-06	
Luftfilter	18608-06	
Fahrgestell	19385-06	
Fahrgestellhalterung	18606-06	
Schlauchhalterung	18607-06	
Aerosolschlauch 30 m-Roll, mit Trennsegmenten	600-12	
Aerosolschlauch 120 cm, einzeln verpackt	624-12	
Aerosolmaske für Erwachsene	13101-12	
Beheizbarer Silikonschlauch 110 cm, einzeln verpackt	18604-06	
AERODYNE Ω , KENDALL Neustadt		Servicestand: 02/96

Bestückungsplan:

Einbauanweisung Ultraschallschwinger:

Die Einbauanweisung für den Ultraschallschwinger gilt nur für Geräte ab der Seriennummer 2500 b.z.w. **CE**-Gerät

- * Die drei Kreuzschlitzschrauben inkl. Abstandshülse (Suchhülse) im Kammerboden entfernen.
- * Mit Hilfe einer Schraube M5 (in das Gewinde im Kammerboden) den Kammerboden anheben und entfernen.
- * Die zwei Kreuzschlitzschrauben am Anpressring des Schwingers entfernen.
- Mit Hilfe eines kleinen Schraubenziehers die Anschlußleitungen des Schwingers aus der Wago-Klemme ziehen.
 (Eindrücken der Wagoklemme und lösen des Federkontaktes mit dem Schraubendreher)
- * Entfernen des defekten Schwingers.
- * Anschlußleitungen des neuen Schwingers in die Wagoklemmen einstecken. (Eindrücken des Federkontaktes der Wago-Klemme mit dem Schraubendreher) Achtung: auf Polarität achten! Grüne Anschlußleitung von Schwinger auf grüne Anschlußleitung an der Wago-Klemme. Weiße Anschlußleitung von Schwinger auf gelbe Anschlußleitung an der Wago-Klemme.
- * Schwinger in die Kammer einsetzen und mit Anpressring und zwei Kreuzschlitzschrauben befestigen. Auf festen und sauberen Sitz des Schwingers achten!
- * Kammerboden aufsetzen.

 **Achtung: keine Anschlußleitungen einklemmen und auf sauberen Sitz der Dichtung

 **achten
- * Kammerboden mit den drei Kreuzschlitzschrauben inkl. Abstandshülse (Suchhülse) befestigen
 - Achtung: die Abstandshülse zeigt in Richtung "Senkung im Kammertopf". Nase im HF-Stecker des Kammerbodens zeigt entgegen der "Senkung im Kammertopf"

Sichtprüfung:

- * Vernebelkammer auf Gerät aufsetzen.
- Senkung im Kammertopf zeigt zur Front des Gerätes

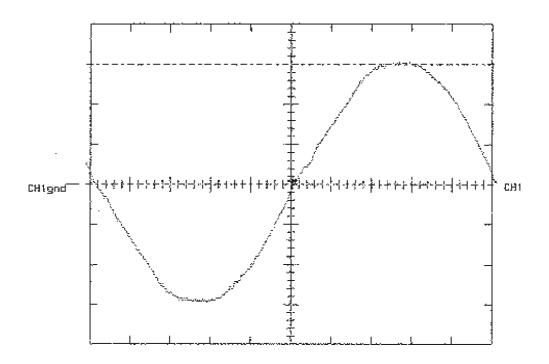
Funktionsprüfung:

- * Vernebelkammer mit Sterilwasser füllen und Vernebelkapsel aufsetzen.
- * Gerät in Betrieb nehmen.
- * Wassersäule ist höher als Kammeroberkante.
- * Mit Digitalmultimeter (Meßbereich 2A/AC) am Stecker J1 auf der Elektronik den Schwingerstrom messen. (Kurzschlußbrücke J1 entfernen)

 **Achtung: Mit Meßleitungen KEINEN Kurzschluß zum Gehäuse oder Kühlkörper verursa-

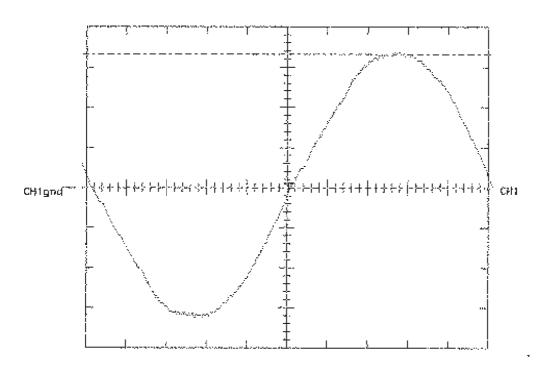
Achtung: Mit Meßleitungen KEINEN Kurzschluß zum Gehäuse oder Kühlkörper verursachen. ZERSTÖRT ELEKTRONIK!

Schwingerstrom 680 mA bis 700 mA nach einer Laufzeit von ca. 5 min.

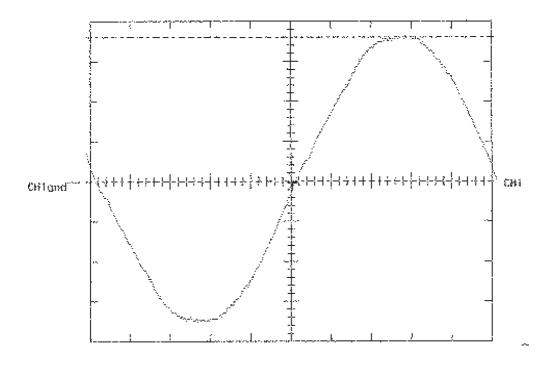

Meßgerät entfernen und Kurzschlußbrücke auf der Elektronik wieder anbringen.

Gerät schließen

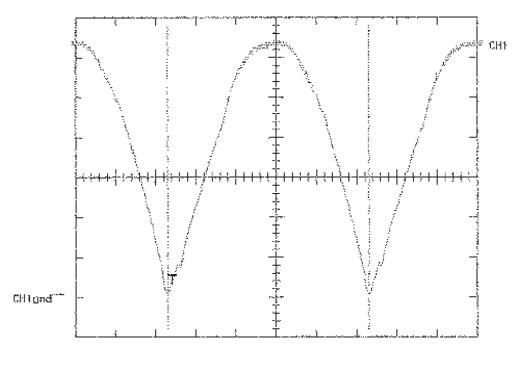
Achtung: Keine Leitungen einklemmen!


Oszillogramme:

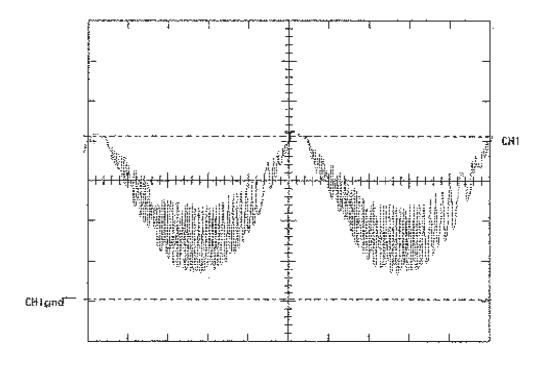
Osz.1: (TP4)


CH1 5V/Div 2ms/Div Triggerschwelle=-625mV Vert U=15.15V

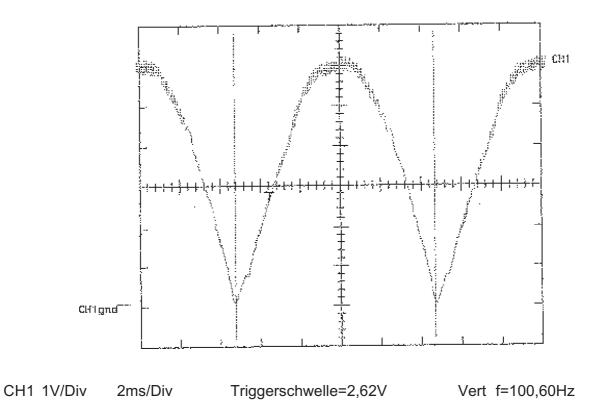
Osz. 2: (TP5)


CH1 5V/Div 2ms/Div Triggerschwelle=-625mV Vert U=16,70V

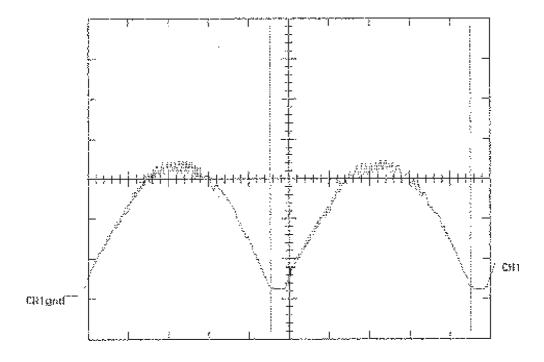
Osz. 3: (TP6)


CH1 5V/Div 2ms/Div Triggerschwelle=-625mV Vert U=18,10V

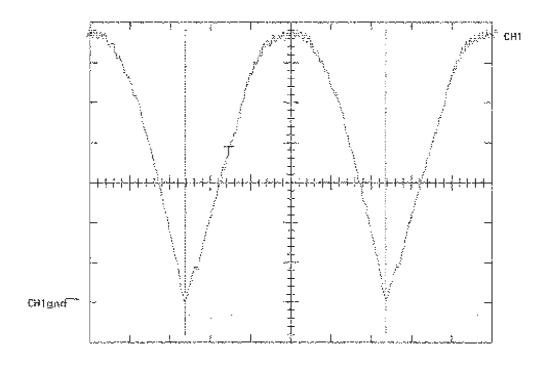
Osz. 4: (TP3):


CH1 5V/Div 2ms/Div Triggerschwelle=2.62V Vert f=100.00Hz

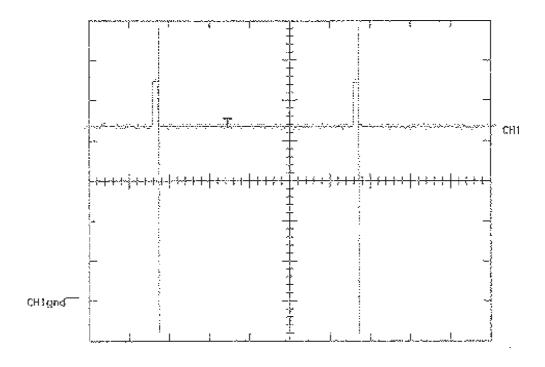
Osz. 5: (TP7)


CH1 200mV/Div 2ms/Div Triggerschwelle=803mV Vert U=820,0mV

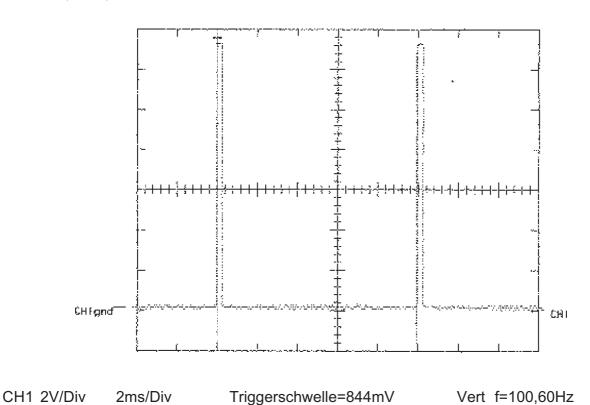
Osz. 6: (TP2)


AERODYNE Ω , KENDALL Neustadt

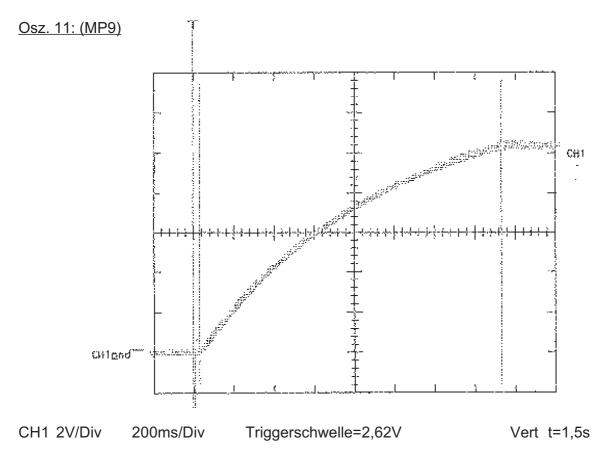
Osz. 7: (TP8)


CH1 2V/Div 2ms/Div Triggerschwelle=1,13V Vert f=100,40Hz

Osz. 8: (TP9)

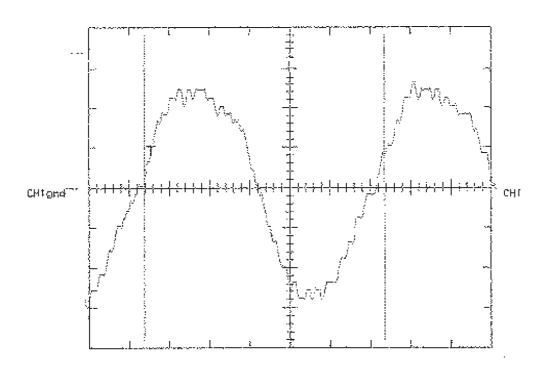

CH1 2V/Div 2ms/Div Triggerschwelle=7,58V Vert f=100,20Hz

Osz. 9: (TP10)

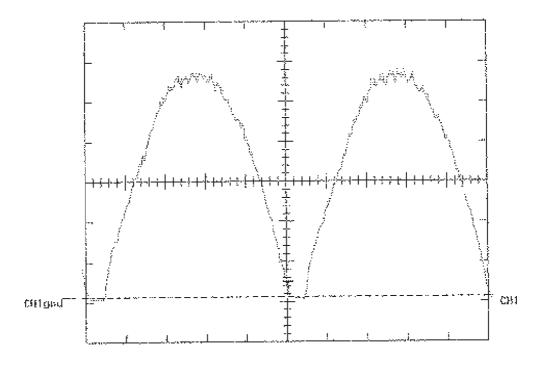


CH1 100mV/Div 2ms/Div Triggerschwelle=333mV Vert f=100.00Hz

Osz. 10: (TP11)



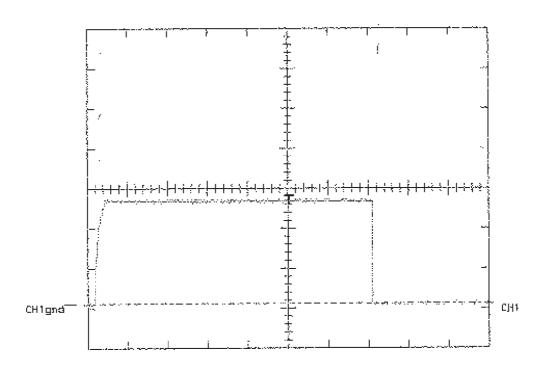
AERODYNE Ω , KENDALL Neustadt


Hinweis: Einmaliges Signal, Anlaufphase, zum Beispiel mit Speicheroszilloskop über Single-Triggerung meßbar.

Osz. 12: (TP1)

CH1 10V/Div 200ns/Div Triggerschwelle=2,62V Vert f=1,67MHz

Osz. 13: (MP7)



CH1 2V/Div

2ms/Div

Triggerschwelle=547mV Vert

Osz. 14: (MP8)

CH1 5V/Div

200ms/Div Triggerschwelle=547mV Vert

Hinweis: Einmaliges Signal, Anlaufphase, zum Beispiel mit Speicheroszilloskop über Single-Triggerung meßbar.

KAPITEL 8

SPEZIFIKATIONEN UND PRÜFPROTOKOLLE

- Technische Daten
- Notizen

Technische Daten:

A) Leistungsdaten des Gerätes:

Nebelleistung - 3 ml/min Luftmenge: - 10 l/min Partikelgröße: 1-6 Mikron

B) Elektrische Daten:

Nennspannung: 230 V~
Nennfrequenz: 50 Hz
Nennstrom: 0,5 A
Leistung: 115 VA
HF-Frequenz: 1,65 MHz
Betriebsart: Dauerbetrieb

Schutzklasse: I
Feuchteschutzart: IPX 1
Grad des Schutzes: BF 🏌

Kapitel 8 – Spezifikationen und Prüfprotokolle	Seite 59
Notizen:	